
The Pip Protokernel

Narjes Jomaa, David Nowak
Joint work with the Pip team

Pip Club Meeting 2018

December 7, 2018

This work is partially supported by the European Celtic-Plus Project ODSI C2014/2-12.
1 / 33

The Pip protokernel: a brief system overview (David Nowak)

Pip design principles and security properties (Narjes Jomaa)

2 / 33

The Pip protokernel: a brief system overview (David Nowak)

Pip design principles and security properties (Narjes Jomaa)

3 / 33

On-Demand Secure Isolation

I This research is part of the European project ODSI.
I Led by Orange
I 1 academic partner: The university of Lille
I 8 industrial partners from France, Romania, and Spain

I In Lille: 3 PhD students and 1 postdoctoral researcher.

I The Pip protokernel is one of the foundations of this project.

I Security protocols are designed on top of Pip.

I Case studies by industrial partners: IoT, M2M, SCADA

I Common Criteria certification
4 / 33

Memory isolation between applications

Why? For safety and security

How? By software (OS kernel), and hardware (MMU, CPU kernel mode)

Correct? Ensured by a formal proof in Coq

Feasible? Yes, by reducing the trusted computing base to its bare bone

reducing the
TCB

⇒ increasing feasibility
of a formal proof

&
reducing the

attack surface

simplifying the
specification language

⇒ increasing feasibility
of verified translation to C

5 / 33

From monolithic kernel to the Pip protokernel

Applications

File System Device Drivers

IPC Scheduling

Multiplexing

Virtual Memory Control Switching

Monolithic Kernel

6 / 33

From monolithic kernel to the Pip protokernel

Applications

File System Device Drivers

IPC Scheduling

Multiplexing

Virtual Memory Control Switching

Microkernel

6 / 33

From monolithic kernel to the Pip protokernel

Applications

File System Device Drivers

IPC Scheduling

Multiplexing

Virtual Memory Control Switching

Exokernel / Hypervisor

6 / 33

From monolithic kernel to the Pip protokernel

Applications

File System Device Drivers

IPC Scheduling

Multiplexing

Virtual Memory Control Switching

The Pip protokernel

6 / 33

Partition tree

Pip organizes the memory into hierarchical partitions.

Example

user space
multiplexer

Linux

p1.1 p1.2 p1.3

FreeRTOS

p2.1 p2.2

kernel space Pip

7 / 33

Partition tree: the point of view of Pip
The contents of each partition is not relevant for Pip.

I Horizontal isolation
Partitions in different subtrees are isolated from each other,
e.g. P1.1 cannot access memory of P1.2 or P2.

I Vertical sharing
A partition has access to the memory of its descendants.

I Kernel isolation
Pip is isolated from all partitions.

user space
Proot

P1

P1.1 P1.2 P1.3

P2

P2.1 P2.2

kernel space Pip

8 / 33

Partition tree: dealing with interrupts

user space
multiplexer

Linux

p1.1 p1.2 p1.3

FreeRTOS

p2.1 p2.2

kernel space Pip

I Software interrupts

I Pip deals with software interrupts to itself,
e.g. FreeRTOS asks Pip to create a new partition.

I Pip forwards other software interrupts to the caller’s parent,
e.g. p1.2 make a system call to Linux.

I Pip forwards hardware interrupts to the root partition,
e.g. a network packet has arrived.

9 / 33

Pip system calls

10 elementary system calls

I Memory management

createPartition creates a child partition

removePartition deletes a child partition

addVaddr lends a memory page to a child

removeVaddr removes a memory page from a child

pageCount the number of needed configuration pages

prepare gives needed configuration pages

collect takes back unused configuration pages

mappedInChild returns the child using a given page

I control switching

dispatch notifies a partition about an interrupt

resume restores the context of a partition

10 / 33

Software layers

 Hardware

Pip Hardware Abstraction Layer (HAL)

Pip service layer

A sub-partition

Root partition

Another sub-partition

A sub-sub-partition Another
sub-sub-partition

Kernel mode

User mode

C and assembly language

Gallina (the language of the Coq proof assistant)

Any language

11 / 33

Applications

I The HAL of Pip has been ported to:

I QEMU (x86)

I x86

I The Galileo board (Intel Pentium-compliant embedded board)

I Kernels ported on Pip

I FreeRTOS: Tasks can be isolated in sibling partitions.

I Linux 4.10.4: More involved because Linux configures MMU.

I Porting a kernel to Pip essentially consists of:

I removing privileged instructions and operations, and

I replacing them with system calls to Pip (paravirtualization).

I Drhystone benchmark: low overhead of 2,6% in terms of CPU cycles

12 / 33

The Pip protokernel: a brief system overview (David Nowak)

Pip design principles and security properties (Narjes Jomaa)

13 / 33

Partition tree management

SH1 SH2 LMMU

PDkernel pages

root

P2P1

P3 P4 P5

The configuration of a partition

I Partition descriptor (PD)

I MMU tables

I Shadow 1 (SH1) and Shadow 2 (SH2)

I Linked list (L)

14 / 33

Data structure of partitions

I MMU structure: Define assigned pages and access control
I Mirror the MMU structure

I Shadow 1: Find out which pages are assigned to children and which pages are used
as a partition descriptor identifier (security)

I Shadow 2: Ease getting back the ownership of assigned pages (efficiency)

I List (L): Ease getting back the ownership of pages lent to the kernel (efficiency)

15 / 33

Pip design principles

(Algorithms)

HAL

Hardware

HAL (model)

State monad

CoqToC

Gallina implementation C implementation

automatic

Platform-
dependent

abstraction

API code
(Algorithms)
API codeImperative style

Hardware access
implementation

Hardware state

I Hardware state: the part that is relevant to model the partition tree
I the partition that is currently active
I the physical memory where Pip stores its own data

16 / 33

Sample translation

– Low-level HAL primitives
– Higher-level monadic code

Pip monadic code in Coq

Definition getFstShadow (partition : page) : LLI page :=

perform idx := getSh1idx in

perform idxSucc := Index.succ idx in

readPhysical partition idxSucc.

Its generated translation to C

uintptr_t getFstShadow (const uintptr_t partition) {

const uint32_t idx = getSh1idx ();

const uint32_t idxSucc = succ (idx);

return readPhysical (partition, idxSucc); }

17 / 33

Security properties

18 / 33

Classification of properties

Proper functioning : a property related to a one or more service of the system
Security : a property that should be preserved by all the services of the system

Proper Functioning

(PF)

Security Properties

(SP)

I Prove all SP ; Prove all PF

I Prove all PF ⇒ Prove all SP;

19 / 33

Reduce the number of properties to prove

Proper Functioning

(PF)

Security Properties

(SP)

legend:

verified properties

I identify security properties;

I identify the subset of correctness properties that shoud be verified to ensure
security properties

20 / 33

X Non interference property1

“a security domain u is noninterfering with domain v if no action performed by u
can influence subsequent outputs seen by v.”

mode utilisateur
multiplexer

Linux (u)

p1.1 p1.2 p1.3

FreeRTOS (v)

p2.1 p2.2

mode noyau Pip

1John Rushby. Noninterference, transitivity, and channel-control security policies. SRI
International, Computer Science Laboratory, 1992.

21 / 33

Reduce to elementary properties

X Non interference property

“a security domain u is noninterfering with domain v if no action performed by u
can influence subsequent outputs seen by v.”

mode utilisateur
p0

p1

p1.1 p1.2 p1.3

p2

p2.1 p2.2

mode noyau Pip

+ isolation property ensured by Pip does not depend on actions performed by
partitions

+ reason about the memory of partitions

+ isolation properties imply non interference property

22 / 33

The horizontal isolation property
Definition HI s : Prop :=

∀ parent child1 child2 : page,

parent ∈ (partitionTree s)→

child1 ∈ (children parent s) →

child2 ∈ (children parent s) →

child1 6= child2 →

(allocatedPages child1 s) ∩ (allocatedPages child2 s) = Ø.

kernel pages

I Sibling partitions cannot access each others memory.

23 / 33

Hierarchical TCB (vertical sharing)

Definition VS s : Prop :=

∀ parent child : page,

parent ∈ (partitionTree s) →

child ∈ (children parent s) →

(allocatedPages child s) ⊆ (assignedPages parent s).

kernel pages

I All the pages allocated for a partition are included in the pages assigned to its
ancestors

24 / 33

The kernel isolation property

Definition KI s : Prop :=

∀ partition1 partition2 : page,

partition1 ∈ (partitionTree s) →

partition2 ∈ (partitionTree s) →

(ownedPages partition1 s) ∩ (kernelPages partition2 s) = Ø.

kernel pages

I No partition can access to the pages owned by the kernel.

25 / 33

Verification approach

26 / 33

Verification approach

Hoare logic on top of the LLI (Low Level Interface) monad
Definition hoareTriple {A : Type} (P : state → Prop) (m : LLI A)
(Q : A → state → Prop) : Prop :=
∀ s , P s → match m s with
| val (a, s ’) ⇒ Q a s’
| undef ⇒ False
end.

States that if the precondition holds then

I the postcondition holds; and

I there is no undefined behavior

{{P}} m {{Q}}

+ {{HI & VS & KI}} API_service {{HI & VS & KI}}

27 / 33

The need of consistency properties

5 {{HI & VS & KI}} API service {{HI & VS & KI}}

+ consistency : C1, C2 ... ≈ well-formedness of Pip’s data structures

{{HI & VS & KI & C1 & C2 & ..}} API service {{HI & VS & KI & C1 & C2 & ..}}

Proper Functioning

(PF)

Security Properties

(SP)

Consistency Properties

(C1, C2, ...)

legend:

verified properties

I discovered incrementally during the proof
I must be preserved in order for isolation to be preserve

28 / 33

Example: createPartition invariant

X {{HI & VS & KI & C}} createPartition v1 v2 v3 v4 v5 {{HI & VS & KI & C}}

29 / 33

Proceed forward using transitivity (1/2)

X {{HI & VS & KI & C}} createPartition v1 v2 v3 v4 v5 {{HI & VS & KI & C}}

{{HI & VS & KI & C}}

perform currentPart := getCurPartition in
perform ptv1FromPD := getTableAddr currentPart v1 nbL in

...
if negb accessv1 then ret false else
writeAccessible ptv1FromPD idxv1 false ;;
...

{{HI & VS & KI & C}}

30 / 33

Proceed forward using transitivity (2/2)

X {{HI & VS & KI & C}} createPartition v1 v2 v3 v4 v5 {{HI & VS & KI & C}}

First sub-goal:

{{HI & VS & KI & C}}

getCurPartition

{{HI & VS & KI & C & P currentPart }}

Second sub-goal:

{{HI & VS & KI & C & P currentPart}}

perform ptv1FromPD := getTableAddr currentPart v1 nbL in
...

if negb accessv1 then ret false else
writeAccessible ptv1FromPD idxv1 false ;;

...
{{HI & VS & KI & C}}

Proper Functioning

(PF)

Security Properties

(SP)

Consistency Properties

(C)

Internal Properties

legend:

verified properties

+ P currentPart : an internal property of createPartition

31 / 33

Verification overview

X one person year

Invariants lines of proof
createPartition (≈ 300loc) ≈ 60000
createPartition + addVaddr (≈ 110loc) ≈ 78000
createPartition + addVaddr + mappedInChild (≈ 40loc) ≈ 78300
createPartition + addVaddr + mappedInChild + removeVaddr (≈ 100loc) ≈ 88300

Table: Size of the proof

Invariant duration
createPartition ≈ 10 months
addVaddr ≈ 2 months
mappedInChild ≈ 4 hours
removeVaddr ≈ 2 weeks

Table: Duration of the verification

32 / 33

To find out more

http://pip.univ-lille1.fr

33 / 33

http://pip.univ-lille1.fr

	The Pip protokernel: a brief system overview (David Nowak)
	Pip design principles and security properties (Narjes Jomaa)

