The Pip Protokernel

Narjes Jomaa, David Nowak
Joint work with the Pip team

Pip Club Meeting 2018

December 7, 2018

This work is partially supported by the European Celtic-Plus Project ODSI C2014/2-12.

The Pip protokernel: a brief system overview (David Nowak)

Pip design principles and security properties (Narjes Jomaa)

/33

The Pip protokernel: a brief system overview (David Nowak)

/33

On-Demand Secure Isolation

|

°Q-

v

This research is part of the European project ODSI.

» Led by Orange
» 1 academic partner: The university of Lille
» 8 industrial partners from France, Romania, and Spain

v

In Lille: 3 PhD students and 1 postdoctoral researcher.

v

v

Security protocols are designed on top of Pip.
Case studies by industrial partners: loT, M2M, SCADA

Common Criteria certification

v

v

The Pip protokernel is one of the foundations of this project.

33

Memory isolation between applications

Why? For safety and security
How? By software (OS kernel), and hardware (MMU, CPU kernel mode)
Correct? Ensured by a formal proof in Coq

Feasible? Yes, by reducing the trusted computing base to its bare bone

reducing the increasing feasibility reducing the
TCB of a formal proof attack surface
simplifying the increasing feasibility

specification language of verified translation to C

33

From monolithic kernel to the Pip protokernel

Applications
-—
File System Device Drivers
IPC Scheduling
Multiplexing

Virtual Memory Control Switching

Monolithic Kernel

/33

From monolithic kernel to the Pip protokernel

Applications

File System Device Drivers

IPC Scheduling
Multiplexing

Virtual Memory Control Switching

Microkernel

6/33

From monolithic kernel to the Pip protokernel

Applications
File System Device Drivers
IPC Scheduling
-~
-y

Multiplexing

Virtual Memory Control Switching

Exokernel / Hypervisor

6/33

From monolithic kernel to the Pip protokernel

Applications
File System Device Drivers
IPC Scheduling
Multiplexing

———
_ —

Virtual Memory Control Switching

The Pip protokernel

6/33

Partition tree

Pip organizes the memory into hierarchical partitions.

Example

P11 P12 P13 P21 p2.2

NS \ /

Linux FreeRTOS
multiplexer

user space

kernel space Pip

33

Partition tree: the point of view of Pip
The contents of each partition is not relevant for Pip.

» Horizontal isolation
Partitions in different subtrees are isolated from each other,
e.g. P1.1 cannot access memory of P15 or P».
» Vertical sharing
A partition has access to the memory of its descendants.
» Kernel isolation
Pip is isolated from all partitions.

P
user space root

kernel space Pip

33

Partition tree: dealing with interrupts

P1.1 P12 P13 P21 p2.2

NS \ /

Linux FreeRTQOS
multiplexer
user space
kernel space Pip

» Software interrupts

» Pip deals with software interrupts to itself,
e.g. FreeRTOS asks Pip to create a new partition.

» Pip forwards other software interrupts to the caller’s parent,
e.g. p1.2 make a system call to Linux.

» Pip forwards hardware interrupts to the root partition,
e.g. a network packet has arrived.

33

Pip system calls

10 elementary system calls

» Memory management

createPartition creates a child partition

removePartition deletes a child partition

addVaddr lends a memory page to a child
removeVaddr removes a memory page from a child
pageCount the number of needed configuration pages
prepare gives needed configuration pages
collect takes back unused configuration pages
mappedInChild returns the child using a given page

> control switching

dispatch notifies a partition about an interrupt

resume restores the context of a partition

10/33

Software layers

- Gallina (the language of the Coq proof assistant)
- C and assembly language

[Any language

User mode

Kernel mode

Pip Hardware Abstraction Layer (HAL

Hardware

11/33

Applications

» The HAL of Pip has been ported to:
> QEMU (x86)

> x86

» The Galileo board (Intel Pentium-compliant embedded board)
» Kernels ported on Pip

» FreeRTOS: Tasks can be isolated in sibling partitions.

» Linux 4.10.4: More involved because Linux configures MMU.
» Porting a kernel to Pip essentially consists of:

» removing privileged instructions and operations, and

» replacing them with system calls to Pip (paravirtualization).

» Drhystone benchmark: low overhead of 2,6% in terms of CPU cycles

12/33

Pip design principles and security properties (Narjes Jomaa)

13/33

Partition tree management

Pages assigned to the root

Pages assigned to P; Pages assigned
to P
- s iz
7 7
/
[Tor] | mﬁj;”j
B

Mnm@l

kernel pages

The configuration of a partition

» Partition descriptor (PD)

» MMU tables
Shadow 1 (SHI1) and Shadow 2 (SH2)
Linked list (L)

v

v

14 /33

Data structure of partitions

» MMU structure: Define assigned pages and access control
» Mirror the MMU structure

» Shadow 1: Find out which pages are assigned to children and which pages are used
as a partition descriptor identifier (security)
» Shadow 2: Ease getting back the ownership of assigned pages (efficiency)

» List (L): Ease getting back the ownership of pages lent to the kernel (efficiency)

15/33

Pip design principles

T
Imperative style API'COde Coq oC API .COde
(Algorithms) automatic (Algorithms)
A Platform- '
Y | dependent :
abstraction : [
Hardware access | HAL (model) HAL !
implementation | |
|
‘ : # I
|
Hardware state | State monad | |Hardware :
Lo)
Gallina implementation C implementation

» Hardware state: the part that is relevant to model the partition tree

> the partition that is currently active
> the physical memory where Pip stores its own data

16 /33

Sample translation

— Low-level HAL primitives
— Higher-level monadic code

Pip monadic code in Coq

Definition getFstShadow (partition : page) : LLI page :=
perform idx := getShlidx in
perform idxSucc := Index.succ idx in
readPhysical partition idxSucc.

Its generated translation to C

uintptr_t getFstShadow (const uintptr_t partition) {
const uint32_t idx = getShilidx ();
const uint32_t idxSucc = succ (idx);
return readPhysical (partition, idxSucc); }

17 /33

Security properties

18/33

Classification of properties

Proper functioning : a property related to a one or more service of the system
Security : a property that should be preserved by all the services of the system

Proper Functioning
(PF)

Security Properties

(SP)

» Prove all SP # Prove all PF
» Prove all PF = Prove all SP;

19/33

Reduce the number of properties to prove

Proper Functioning
(PF)

Security Properties
(SP)

legend:
WY verified properties

> identify security properties;

> identify the subset of correctness properties that shoud be verified to ensure

security properties

20/33

v Non interference property!

“a security domain u is noninterfering with domain v if no action performed by u
can influence subsequent outputs seen by v.”

P11 P1.2 P1.3 p2.1 p2.2

N \ /

Linux (u) FreeRTOS (v)

~N S

. multiplexer
mode utilisateur P

mode noyau Pip

! John Rushby. Noninterference, transitivity, and channel-control security policies. SRI

International, Computer Science Laboratory, 1992.
21/33

Reduce to elementary properties

v" Non interference property

“a security domain u is noninterfering with domain v if no action performed by u
can influence subsequent outputs seen by v.”

P11 P12 P13 P21 P22
N \/
P1 p2
\ /
mode utilisateur Po

mode noyau Pip

1= jsolation property ensured by Pip does not depend on actions performed by
partitions

1= reason about the memory of partitions

1= jsolation properties imply non interference property

22 /33

The horizontal isolation property
Definition HI s: Prop :=

V parent
parent
childl
child2

childl

childl child2 : page,
€ (partitionTree s)—
€ (children parent s) —
€ (children parent s) —

child2 —

(allocatedPages childl s) N (allocatedPages child2 s) = @.

Pages assigned to the root

Pages assigned to P, Pages assigned
to Py

-
B

Il kernel pages

kernel pages

» Sibling partitions cannot access each others memory.

23/

33

Hierarchical TCB (vertical sharing)

Definition VS's : Prop :=
V parent child : page,
parent € (partitionTree s) —

child € (children parent s) —

(allocatedPages child s) C (assignedPages parent s).

Pages assigned to the root

» All the pages allocated for a partition are included in the pages assigned to its

ancestors

Pages assigned to Py Pages assigned

to Py
;-
P

kernel pages kernel pages

kernel pages

24 /33

The kernel isolation property

Definition Kl s: Prop :=
V partitionl partition2 : page,
partitionl € (partitionTree s) —

partition2 € (partitionTree s) —

[
IS

(ownedPages partitionl s) N (kernelPages partition2

Pages assigned to the root

Pages assigned to P Pages ﬂssitgned
0 2

-
P

ke 1 S
kernel pages SRR ISR

kernel pages

» No partition can access to the pages owned by the kernel

25/33

Verification approach

26 /33

Verification approach

Hoare logic on top of the LLI (Low Level Interface) monad

Definition hoareTriple {A : Type} (P : state — Prop) (m : LLI A)
(Q : A — state — Prop) : Prop :=
Vs, Ps — match ms with

| val (a, s') = Qas’

| undef _ _= False

end.

States that if the precondition holds then
» the postcondition holds; and
» there is no undefined behavior

{{P}} m {{Q}}

v {{HI & VS & KI}} API_service {{HI & VS & KI}}

27 /33

The need of consistency properties

X {{HI & VS & KI}} APl service {{Hl & VS & KI}}

1= consistency : C1, C2 ... a well-formedness of Pip's data structures

{{HI & VS & KI & C1 & C2 & ..}} APl service {{HI & VS & KI & C1 & C2 & ..}}

Consistency Properties

(C1, C2, ... Proper Functioning

Security Properties
(SP)

legend:

[verified properties

» discovered incrementally during the proof
» must be preserved in order for isolation to be preserve

28 /33

Example: createPartition invariant

V' {{HI & VS & KI & C}} createPartition v1 v2 v3 v4 v56 {{HI & VS & Kl & C}}

29 /33

Proceed forward using transitivity (1/2)

V' {{HI & VS & KI & C}} createPartition v1 v2 v3 v4 v56 {{HI & VS & Kl & C}}

{{HI & VS & KI & C}}

perform currentPart := getCurPartition in
perform ptvlFromPD := getTableAddr currentPart v1 nbL in

if negb accessvl then ret false else
writeAccessible ptvlFromPD idxvl false ;;

{{HI & VS & KI & C}}

30/33

Proceed forward using transitivity (2/2)

V' {{HI & VS & KI & C}} createPartition v1 v2 v3 v4 v5 {{HI & VS & Kl & C}}

First sub-goal:
{{HI & VS & KI & C}}

getCurPartition

{{HI & VS & Kl & C & P currentPart }}

Second sub-goal:
{{Hl & VS & Kl & C & P currentPart}}

perform ptvlFromPD := getTableAddr currentPart v1 nbL in

if negb accessvl then ret false else
writeAccessible ptvlFromPD idxvl false ;;

{({HI & VS & KI & C}}

=" P currentPart : an internal property of createPartition

Consistency Propertics

©

Proper Functioning

Security Properties

(SP)

Internal Properties

legend.

1Y verified properties

31/33

Verification overview

v/ one person year

Invariants lines of proof
createPartition (= 300/oc) ~ 60000
createPartition + addVaddr (~ 110/oc) A 78000
createPartition + addVaddr 4+ mappedInChild (= 40/oc) ~ 78300

createPartition + addVaddr + mappedInChild 4+ removeVaddr (= 100/oc) = 88300

Table: Size of the proof

Invariant duration
createPartition =& 10 months
addVaddr ~ 2 months
mappedInChild = 4 hours
removeVaddr ~ 2 weeks

Table: Duration of the verification

32/33

To find out more

http://pip.univ-1illel.fr

33/33

http://pip.univ-lille1.fr

	The Pip protokernel: a brief system overview (David Nowak)
	Pip design principles and security properties (Narjes Jomaa)

