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On-Demand Secure Isolation
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This research is part of the European project ODSI.

» Led by Orange
» 1 academic partner: The university of Lille
» 8 industrial partners from France, Romania, and Spain

v

In Lille: 3 PhD students and 1 postdoctoral researcher.
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Security protocols are designed on top of Pip.
Case studies by industrial partners: loT, M2M, SCADA

Common Criteria certification

v

v

The Pip protokernel is one of the foundations of this project.
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Memory isolation between applications

Why? For safety and security
How? By software (OS kernel), and hardware (MMU, CPU kernel mode)
Correct? Ensured by a formal proof in Coq

Feasible? Yes, by reducing the trusted computing base to its bare bone

reducing the increasing feasibility reducing the
TCB of a formal proof attack surface
simplifying the increasing feasibility

specification language of verified translation to C
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From monolithic kernel to the Pip protokernel

Applications
-—
File System Device Drivers
IPC Scheduling
Multiplexing

Virtual Memory Control Switching

Monolithic Kernel
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From monolithic kernel to the Pip protokernel

Applications

File System Device Drivers

IPC Scheduling
Multiplexing

Virtual Memory Control Switching

Microkernel
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From monolithic kernel to the Pip protokernel

Applications
File System Device Drivers
IPC Scheduling
-~
-y

Multiplexing

Virtual Memory Control Switching

Exokernel / Hypervisor
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From monolithic kernel to the Pip protokernel

Applications
File System Device Drivers
IPC Scheduling
Multiplexing

—————————————————————————————————————————
_ —

Virtual Memory Control Switching

The Pip protokernel
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Partition tree

Pip organizes the memory into hierarchical partitions.

Example

P11 P12 P13 P21 p2.2

NS \ /

Linux FreeRTOS
multiplexer

user space

kernel space Pip
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Partition tree: the point of view of Pip
The contents of each partition is not relevant for Pip.

» Horizontal isolation
Partitions in different subtrees are isolated from each other,
e.g. P1.1 cannot access memory of P15 or P».
» Vertical sharing
A partition has access to the memory of its descendants.
» Kernel isolation
Pip is isolated from all partitions.

P
user space root

kernel space Pip
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Partition tree: dealing with interrupts

P1.1 P12 P13 P21 p2.2

NS \ /

Linux FreeRTQOS
multiplexer
user space
kernel space Pip

» Software interrupts

» Pip deals with software interrupts to itself,
e.g. FreeRTOS asks Pip to create a new partition.

» Pip forwards other software interrupts to the caller’s parent,
e.g. p1.2 make a system call to Linux.

» Pip forwards hardware interrupts to the root partition,
e.g. a network packet has arrived.
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Pip system calls

10 elementary system calls

» Memory management

createPartition creates a child partition

removePartition deletes a child partition

addVaddr lends a memory page to a child
removeVaddr removes a memory page from a child
pageCount the number of needed configuration pages
prepare gives needed configuration pages
collect takes back unused configuration pages
mappedInChild returns the child using a given page

> control switching

dispatch notifies a partition about an interrupt

resume restores the context of a partition
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Software layers

- Gallina (the language of the Coq proof assistant)
- C and assembly language

[ Any language

User mode

Kernel mode

Pip Hardware Abstraction Layer (HAL

Hardware
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Applications

» The HAL of Pip has been ported to:
> QEMU (x86)

> x86

» The Galileo board (Intel Pentium-compliant embedded board)
» Kernels ported on Pip

» FreeRTOS: Tasks can be isolated in sibling partitions.

» Linux 4.10.4: More involved because Linux configures MMU.
» Porting a kernel to Pip essentially consists of:

» removing privileged instructions and operations, and

» replacing them with system calls to Pip (paravirtualization).

» Drhystone benchmark: low overhead of 2,6% in terms of CPU cycles
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Pip design principles and security properties (Narjes Jomaa)
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Partition tree management

Pages assigned to the root

Pages assigned to P; Pages assigned
to P
- s iz
7 7
/
[Tor] | mﬁj;”j
B

Mnm@l

kernel pages

The configuration of a partition

» Partition descriptor (PD)

» MMU tables
Shadow 1 (SHI1) and Shadow 2 (SH2)
Linked list (L)

v

v
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Data structure of partitions

» MMU structure: Define assigned pages and access control
» Mirror the MMU structure

» Shadow 1: Find out which pages are assigned to children and which pages are used
as a partition descriptor identifier (security)
» Shadow 2: Ease getting back the ownership of assigned pages (efficiency)

» List (L): Ease getting back the ownership of pages lent to the kernel (efficiency)

15/33



Pip design principles

T
Imperative style API'COde Coq oC API .COde
(Algorithms) automatic (Algorithms)
A Platform- '
Y | dependent :
abstraction : [
Hardware access | HAL (model) HAL !
implementation | |
|
‘ : # I
|
Hardware state | State monad | |Hardware :
Lo )
Gallina implementation C implementation

» Hardware state: the part that is relevant to model the partition tree

> the partition that is currently active
> the physical memory where Pip stores its own data
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Sample translation

— Low-level HAL primitives
— Higher-level monadic code

Pip monadic code in Coq

Definition getFstShadow (partition : page) : LLI page :=
perform idx := getShlidx in
perform idxSucc := Index.succ idx in
readPhysical partition idxSucc.

Its generated translation to C

uintptr_t getFstShadow (const uintptr_t partition) {
const uint32_t idx = getShilidx ();
const uint32_t idxSucc = succ (idx);
return readPhysical (partition, idxSucc); }
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Security properties
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Classification of properties

Proper functioning : a property related to a one or more service of the system
Security : a property that should be preserved by all the services of the system

Proper Functioning
(PF)

Security Properties

(SP)

» Prove all SP # Prove all PF
» Prove all PF = Prove all SP;
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Reduce the number of properties to prove

Proper Functioning
(PF)

Security Properties
(SP)

legend:
WY verified properties

> identify security properties;

> identify the subset of correctness properties that shoud be verified to ensure

security properties
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v Non interference property!

“a security domain u is noninterfering with domain v if no action performed by u
can influence subsequent outputs seen by v.”

P11 P1.2 P1.3 p2.1 p2.2

N \ /

Linux (u) FreeRTOS (v)

~N S

. multiplexer
mode utilisateur P

mode noyau Pip

! John Rushby. Noninterference, transitivity, and channel-control security policies. SRI

International, Computer Science Laboratory, 1992.
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Reduce to elementary properties

v" Non interference property

“a security domain u is noninterfering with domain v if no action performed by u
can influence subsequent outputs seen by v.”

P11 P12 P13 P21 P22
N \/
P1 p2
\ /
mode utilisateur Po

mode noyau Pip

1= jsolation property ensured by Pip does not depend on actions performed by
partitions

1= reason about the memory of partitions

1= jsolation properties imply non interference property
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The horizontal isolation property
Definition HI s: Prop :=

V parent
parent
childl
child2

childl

childl child2 : page,
€ ( partitionTree s)—
€ (children parent s) —
€ (children parent s) —

# child2 —

(allocatedPages childl s) N (allocatedPages child2 s) = @.

Pages assigned to the root

Pages assigned to P, Pages assigned
to Py

-
B

Il kernel pages

kernel pages

» Sibling partitions cannot access each others memory.

23/
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Hierarchical TCB (vertical sharing)

Definition VS's : Prop :=
V parent child : page,
parent € ( partitionTree s) —

child € (children parent s) —

(allocatedPages child s) C (assignedPages parent s).

Pages assigned to the root

» All the pages allocated for a partition are included in the pages assigned to its

ancestors

Pages assigned to Py Pages assigned

to Py
;-
P

kernel pages kernel pages

kernel pages
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The kernel isolation property

Definition Kl s: Prop :=
V partitionl partition2 : page,
partitionl € ( partitionTree s) —

partition2 € ( partitionTree s) —

[
IS

(ownedPages partitionl s) N (kernelPages partition2

Pages assigned to the root

Pages assigned to P Pages ﬂssitgned
0 2

-
P

ke 1 S
kernel pages SRR ISR

kernel pages

» No partition can access to the pages owned by the kernel
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Verification approach
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Verification approach

Hoare logic on top of the LLI (Low Level Interface) monad

Definition hoareTriple {A : Type} (P : state — Prop) (m : LLI A)
(Q : A — state — Prop) : Prop :=
Vs, Ps — match ms with

| val (a, s') = Qas’

| undef _ _= False

end.

States that if the precondition holds then
» the postcondition holds; and
» there is no undefined behavior

{{P}} m {{Q}}

v {{HI & VS & KI}} API_service {{HI & VS & KI}}
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The need of consistency properties

X {{HI & VS & KI}} APl service {{Hl & VS & KI}}

1= consistency : C1, C2 ... a well-formedness of Pip's data structures

{{HI & VS & KI & C1 & C2 & ..}} APl service {{HI & VS & KI & C1 & C2 & ..}}

Consistency Properties

(C1, C2, ... Proper Functioning

Security Properties
(SP)

legend:

[ verified properties

» discovered incrementally during the proof
» must be preserved in order for isolation to be preserve
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Example: createPartition invariant

V' {{HI & VS & KI & C}} createPartition v1 v2 v3 v4 v56 {{HI & VS & Kl & C}}
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Proceed forward using transitivity (1/2)

V' {{HI & VS & KI & C}} createPartition v1 v2 v3 v4 v56 {{HI & VS & Kl & C}}

{{HI & VS & KI & C}}

perform currentPart := getCurPartition in
perform ptvlFromPD := getTableAddr currentPart v1 nbL in

if negb accessvl then ret false else
writeAccessible ptvlFromPD idxvl false ;;

{{HI & VS & KI & C}}
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Proceed forward using transitivity (2/2)

V' {{HI & VS & KI & C}} createPartition v1 v2 v3 v4 v5 {{HI & VS & Kl & C}}

First sub-goal:
{{HI & VS & KI & C}}

getCurPartition

{{HI & VS & Kl & C & P currentPart }}

Second sub-goal:
{{Hl & VS & Kl & C & P currentPart}}

perform ptvlFromPD := getTableAddr currentPart v1 nbL in

if negb accessvl then ret false else
writeAccessible ptvlFromPD idxvl false ;;

{({HI & VS & KI & C}}

=" P currentPart : an internal property of createPartition

Consistency Propertics

©

Proper Functioning

Security Properties

(SP)

Internal Properties

legend.

1Y verified properties
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Verification overview

v/ one person year

Invariants lines of proof
createPartition (= 300/oc) ~ 60000
createPartition + addVaddr (~ 110/oc) A 78000
createPartition + addVaddr 4+ mappedInChild (= 40/oc) ~ 78300

createPartition + addVaddr + mappedInChild 4+ removeVaddr (= 100/oc) = 88300

Table: Size of the proof

Invariant duration
createPartition =& 10 months
addVaddr ~ 2 months
mappedInChild = 4 hours
removeVaddr ~ 2 weeks

Table: Duration of the verification
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To find out more

http://pip.univ-1illel.fr
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