
Toolchain for Pip’s Gallina code
Towards a Certified Compilation

December 7th, 2018

Source

Pip’s Gallina source code must be compiled to get a runnable
kernel.

src.v
(** The [getPd] function returns the page directory

of a given partition *)
Definition getPd partition :=

perform idxPD := getPDidx in
perform idx := MALInternal.Index.succ idxPD in
readPhysical partition idx.

We need to prove that the properties we proved on the source are
still valid for the compiled code.

Extraction

Coq provides a facility to extract computational code into OCaml
or Haskell code.

Cons:
▶ Garbage collector vs Pip’s memory management
▶ OCaml or Haskell runtime
▶ glue with ASM code

Current situation

src.v AST.json code.c

Coq (extraction) digger

code.c
page getPd(page partition) {

index idxPD = getPDidx();
index idx = Index_succ(idxPD);
return readPhysical(partition, idx);

}

Current situation (2)

Pros:
▶ no GC
▶ no runtime
▶ standard linking with ASM code

Cons:
▶ no proof: the properties proved on the src.v might not hold

for code.c
▶ manual mapping (using typedef and #define) from

elaborate Coq types to C types

Holy Grail

src.v Coq-AST.v CompCertC-AST.v

Coq plugin or …

checking consistency certified conversion

