

ODSI Key Achivement:

The Protokernel PIP

PIP - Introduction
● Goal: Construct a flexible, minimal and (mathematically)

secure proved kernel as highest privileged software
component (TCB)

● State of the art:
– Small kernel design: microkernel and nanokernel trends in 90s
– Secure proved: “proving existing kernels is hard”
– Only one open-source secure proved micro-kernel: SeL4

PIP - Design choices (1/2)
● Smallest size possible

– smaller proofs: 200K proofs LoC for 500-1000 LoC

● Proof oriented
– Using a subset of the formal language CoQ to describe

the kernel model
– Same formal language used for kernel model and

associated proofs

PIP - Design choices (2/2)
● Only memory isolation

– Seen as Hierarchical isolation model
– Flexible for security model

● Model to C translation
– Keeping semantic at “instruction-level”
– Proved-translation via the translator DEC

 5

Formal
Kernel
Model

Security
Formal Proof
Framework

Applied to

Hardware

PIPC codeDEC
Conversion Compilation

PIP – Development workflow

Coq language

PIP - Results
● PIP is fully functional

– Behavior model written in a formal and portable language
– Target: Intel Gallileo v2

● FreeRTOS portage
– Legacy code can be ported to run on the top of Pip

● Multiplexer (ORANGE)
– Designed to managed faulty partitions

 7Hardware

PIP

Root partition

Multiplexer

Fault
Manager

Native
Partition

Legacy code
On FreeRTOS

 8Hardware

PIP

Root partition

Multiplexer
Owner
Partition

Third-party
Fault
Manager

Third-party partition

Network
Manager

Service 1

Service 1

Auth. Manager

PIP - Bootstrapping an ecosystem
● PIP is Open Source

– Available on github https://www.github.com/2xs/
– v0.3 released last week

● Workshop ENTROPY 2018 (25th and 26th of January 2018)
– PIP has been presented to security OS research community

● Meeting PIP User Club (7th December 2018)
– Offering help to industrial partners to develop solutions

https://www.github.com/2xs/

