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1 Setting up your development environment

1.1

Required tools

Coq Proof Assistant:

Doxygen:

GNU C Compiler:

GNU Debugger:

GNU Make:

GNU GRUB:

Netwide Assembler:

OCaml Package Manager:

1.2

TeX Live

QEMU:

Haskell Stack:

To get started with Pip, it is required to install the appropriate develop-
ment environment. This section describes the tools required by Pip as
well as the three ways to obtain a functional development environment.

Pip’s source code and formal proof of its memory isolation properties are
written using the Coq proof assistant. In order to compile Coq files and
generate the required intermediate files for the kernel to build, you will
need the 8.13.1 version of Coq. A proper way to install Coq is via opam.

Pip’s documentation is generated through CoqDoc (included with Coq)
for the Coq part, and Doxygen for the C part. The documentation is not
mandatory to compile Pip, but it is highly required that you compile it
and keep it somewhere safe so you always have some reference to read if
you need some information about Pip’s internals.

GCC is the only C compiler known to compile Pip correctly. CLANG,
for example, is not yet supported. To that end, you need a version of
GCC capable of producing 32bits ELF binaries.

The GNU Debugger allows you to debug a partition while it is executed
on the top of Pip. This is very useful during the development process.
That’s the reason why GDB is not mandatory but highly recommended.

Althought Pip is known to compile on FreeBSD and OSX hosts, these
need a GNU software in order to perform the compilation, which is GNU
Make 4.3 and above.

GNU GRUB is a boot loader which allows to create bootable ISO file.
It is not mandatory but required if you want to produce a bootable ISO
file of your project.

Pip’s assembly sources for the x86 architecture are assembled using the
Netwide Assembler (NASM). A known working version is version 2.14,
although any version since 2.0 should be working.

Opam is the package manager for the OCaml programming language, the
language in which Coq is implemented. This is the proper way to install
and pin the Coq Proof Assistant to a specific version.

TeX Live is an open source TeX distribution required to generate the
getting started of Pip. It not mandatory, but required if you want to
generate this document.

Although it is not required to build Pip, it is highly recommended to
run Pip on emulated hardware rather than physical hardware during
development. As such, QEMU is a known, multi-platform emulator, and
is fully integrated into Pip’s toolchain.

Pip uses a home-made extractor to convert Coq code into C code. In
order to compile this Extractor, which is written in Haskell, we use the
Stack tool to download and install automatically the required GHC and
libraries.

Virtual machine image

Before starting, you need to install a virtualization software such as Vir-
tualBox or VMware. You can follow the procedure on their websites.



1.3 Docker image

Once the installation is completed, you need to download the archived
OVA image of the virtual machine and the SHA-256 message digest:

# Download the archived OVA image of the virtual machine
$ wget http://pip.univ—1lillel . fr/image/vm/pip.tar.gz

# Download the SHA—-256 message digest of the archived image
$ wget http://pip.univ—1lillel . fr /image/vm/pip.tar.gz.
sha256sum

When the download is complete, you can check the integrity of the down-
loaded file:

‘ $ sha256sum —c pip.tar.gz.sha256sum

Now, you have to extract the archived image:

‘$ tar —xvf pip.tar.gz

Once the extraction is complete, you have to import the OVA image into
the virtualization software, then start the virtual machine.

The login credentials are:

Login: pip
Password: pip

or

Login: root
Password: pip

Your development environment is ready.

Before starting, you need to install Docker on your machine. You can
follow the procedure on their website. Once the installation is completed,
you have to download the archived Docker image and the SHA-256 mes-
sage digest:

# Download the archived Docker image of Pip
$ wget http://pip.univ—1lillel . fr/image/docker/pip.tar.gz

# Download the SHA—256 message digest of the archived image
$ wget http://pip.univ—1lillel . fr/image/docker/pip.tar.gz.
sha256sum

When the download is complete, you can check the integrity of the down-
loaded file:



$ sha256sum —c pip.tar.gz.sha256sum

Now, you need to import the archived image:

$ docker load —i pip.tar.gz

and check that it is imported:

$ docker image ls

Once the Docker image imported, you can either run a new container
from the image in interactive mode:

# Run Pip’s image inside of a new container
$ docker run —it —mname pip pip bash

# Run a command in the running container

$ whoami

# Exit the shell

$ exit

or in detached mode:

# Run Pip’s image inside of a new container
$ docker run —dit —mname pip pip bash

# Run a command in the running container
$ docker exec pip whoami

When you are done with the container, you can stop it and remove it:

# Stop the container
$ docker stop pip

# Remove the container
$ docker rm pip

Before removing the container, make sure that you have saved all your
changes: any unsaved changes will be lost.

Your development environment is ready.

1.4 Step-by-step installation

This section describes step-by-step how to get a development environment
on your host machine. We assume that your machine is running a Debian-
based Linux distribution.




1.4.1 Installing the required packages

Update the apt package index:

$ sudo apt update

For the x86 architecture, install the following necessary packages:

$ sudo apt install build—essential doxygen gdb git grub2—
common grub—pc haskell —stack nasm opam gemu—system—i386
texlive texlive—latex—extra xorriso

For the ARMv7 architecture, install the following necessary packages:

$ sudo apt install build—essential doxygen gcc—arm—none—
eabi gdb—multiarch git grub2—common grub—pc haskell —stack
opam gemu—system—arm texlive texlive—latex—extra xorriso

Download the GHC compiler if necessary in the $HOME/ . stack:

$ stack setup

Initialize the internal state of opam in the $HOME/ . opam directory:

$ opam init
$ eval $(opam env)

Build Coq from source with opam:

$ opam pin add coq 8.13.1

1.4.2  Getting source code

First, you have to clone the pipcore repository which contains the kernel,
proof and documentation of Pip:

$ git clone https://github.com/2xs/pipcore. git

Then, you may need the source code of the userland library of Pip, called
LibPip, which provides useful functions for calling the API or managing
the data structures of Pip:

$ git clone https://github.com/2xs/libpip.git




1.4.3 Building LibPip
To build a partition on top of Pip, you will probably need LibPip.
To build Libpip for the x86 architecture:

‘ $ make —C /path/to/libpip ARCH=x86 ‘

To build LibPip for the ARMvT architecture:

‘ $ make —C /path/to/libpip ARCH=armv7 ‘

1.4.4 Building Digger

In order to convert the Coq code into C code, you need to build the
extractor, called Digger. The first step is to download the source code:

# Initialize your local configuration file
$ git —C /path/to/pipcore submodule init

# Fetch all the data from the digger project
$ git —C /path/to/pipcore submodule update

Then, build Digger through the stack tool:

$ make —C /path/to/pipcore/tools/digger

1.4.5 Configuration script

The purpose of the configuration script is to detect whether the tools
needed to compile the project are installed. This script expects three
mandatory arguments: the target architecture, the name of the root par-
tition and the path to the LibPip. Optional arguments can also be pro-
vided. For more information:

./ path/to/pipcore/configure.sh —help

To configure the project for the x86 architecture and the minimal root
partition:

./ path/to/pipcore/configure.sh \
—architecture=x86 \
——partition —-name=minimal \
—libpip=/path/to/libpip

To configure the project for the ARMv7 architecture and the minimal
root partition:



./ path/to/pipcore/configure.sh \
——architecture=armv7 \
—partition —-name=minimal \
—libpip=/path/to/libpip

Your development environment is ready.

2 Testing your development environment

2.1 Building pipcore

2.2 Testing in QEMU

3 User Guide

This section describes how to test your development environment, whether
it is from a virtual machine image, a Docker image or your host machine.

You can build pipcore with the root partition on top of it:

$ make —C /path/to/pipcore

You should find in /path/to/pipcore directory the ELF binary and the
ISO image of Pip.

You can test the ELF version of Pip in QEMU:

$ make —C /path/to/pipcore gemu—elf

or test the ISO version:

$ make —C /path/to/pipcore gemu—iso

This should display “Hello world!” on the serial link after a few seconds.

3.1 The minimal partition

3.1.1 Calling the API of Pip

The purpose of the minimal partition is to show how to make a functional
minimal partition that prints “Hello World” on the serial link without the
LibPip. To go into details, see the source code of the minimal partition.

In order to keep the minimal partition as minimal as possible, we will not
use the LibPip library, but rather call the Pip API directly using inline
assembly.

Before writing a character on the serial link, it is necessary to check if it
is ready to transmit. We must therefore write a function that allows us to
retrieve the state of the transmitting cycle of the serial link contained in
the Line Status Register (LSR). This register is accessible in read mode
at address 0x3FD (SERIAL_PORT+5). Since we are in userland, we cannot
directly read the IO port using the IN instruction. We will have to call the




corresponding Pip service which is located at index 0x38 in the Global
Descriptor Table (GDT).

The function of the minimal partition that call the IN service of Pip to
retrieves the state of the transmitting cycle is the following:

uint32_t serial_transmit_ready (void) {

register uint32_t result asm(”eax”);
asm (

?push %1;”

?lcall $0x38,%0x0;”

7add $0x4, %%esp;”

/* Outputs x*/

: ?=r” (result)

/* Inputs =/

. 7i” (SERIAL_PORT+5)

/+ Clobbers x*/

)

return result & 0x20;

This Pip service expects to return the value read on the 10 port in the
EAX register of the CPU. We therefore declare a variable that will be
stored in this register:

register uint32_t result asm(”eax”);

It also expects to have one argument on the stack, which is the address
of the IO port to read. So we push on the stack the argument %1, which
is the SERTIAL PORT+5 argument present as input operand:

push %1;

Now that we have a variable stored in the EAX register and pushed the
argument onto the stack, we can make our far call:

‘lcall $0x38 , $0x0 ;

We clear the stack after the far call by adding 4 to the ESP register:

‘ add $0x4, %%esp;

We define as output operand our result variable which will contain the
state of the LSR after the far call. "=r" is an operand constraint where
"=" means that it is an output operand and "r" means that the operand
is a register:

/% Outputs x*/
: 7=r” (result)




We define as input operand the value SERIAL _PORT+5 which is the address
of the IO port to read. "i" means that it is an immediate value:

/* Inputs x/
”1” (SERIAL_PORT+5)

Since we have not clobbers any registers other than the output register,
we can provide an empty list:

/+ Clobbers x*/

We return result & 0x20 because the state of the transmitting cycle is
set on bit 5 of the LSR:

return result & 0x20;

So this function returns 0 if the serial link is not ready or a value other
than 0 otherwise.

Now that we have a function to check if the serial link is ready to transmit,
we can write a function to print a character. In order to print a character
on the serial link, we must write to address 0x3F8 (SERIAL_PORT). As we
are still in userland, we cannot write directly to the IO port using the
0UT instruction. We will have to use the corresponding Pip service which
is located at index 0x30 in the GDT.

The function of the minimal partition that call the OUT service of Pip to
prints a character on the serial link is the following:

void serial_putc(char c) {
asm (
?push %1;”
?push %0;”
?lcall $0x30, $0x0;”
7add $0x8, %Y%esp”
/* Outputs x*/

/* Inputs */
”1” (SERIAL_PORT) ,
?r” ((uint32-t) c)
/+* Clobbers x/

Now that we have these two functions, we can write our serial_puts
which writes a string to the serial link:

void serial_puts(const char =xstr) {
for (char *it = str; =*it; 4++it) {
while (! serial_transmit_ready ());
serial_putc (xit);




3.1.2 Linker script

3.1.3 Makefile

Finally, we can print our “Hello World” on the serial link using our
serial _puts function:

void _main ()

{
const char *xHello_world_str = ”Hello World !\n”;
serial_puts (Hello_world_str);

for (55);

The linker script is use to specify the format and layout of the final
executable.

We start by defining the output format, which is always a flat binary,
and then the entry point of the partition which is _main:

OUTPUTFORMAT ( binary )
ENTRY ( -main)

We define the mandatory .text section at address 0x700000, a .data
section for the .data and .rodata and a .bss section for the .bss:

SECTIONS {
.text 0x700000
{
* (. text)
. = ALIGN(0x1000) ;

}

.data :

{
*(.data)
x(.rodata)
. = ALIGN(0x1000) ;

The .text and .data sections are aligned to the size of a page using
ALIGN(0x1000).

The Makefile is a file allowing to describe the steps necessary to the
generation of executables.

We start by declaring the CFLAGS which contains the flags used to compile
the minimal partition into intermediate objects:

CFLAGS=m32 —c —nostdlib —freestanding —fno—stack—protector
—fno—pic —no—pie
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-m32

-c

-nostdlib
--freestanding
-fno-stack-protector
-fno-pic

-no-pie

-m elf_i386
-T link.1ld

The meaning of the flags is:

Generate code for a 32-bit environment.

Do not use the linker.

Do not use the standard system startup files or libraries when linking.
Do not assume that standard functions have their usual definition.
Disable the stack protection.

Disable the generation of position-independent code.

Disable the generation of position independent executable.

We then declare the LDFLAGS which contains the flags used to link the
minimal partition executable:

LDFLAGS=m elf_i386 —T link.ld

The meaning of the flags is:
Create an executable that can run on elf_i386 processor.
Use the linker script that we declare in the previous section.

Finally, we define some generic rules for our sources, and invoke the
required compiler for each one, calling the linker once everything has
been done:

CSOURCES=$ (wildcard =x.c)
COBJ=$ (CSOURCES: . c=.0)
EXEC=minimal . bin

all: $(EXEC)
@echo Done.

clean:

rm —f $(COBJ) $(EXEC)

$ (EXEC) : $(COBJ)
$(LD) $° —o $@ $(LDFLAGS)

%.0: %.c
$(CC) §(CFLAGS) $< —o $@

3.2 The launcher partition

The purpose of the launcher partition is to show how a parent parti-
tion creates and transfers its execution flow to a child partition. To go
into details, see the source code of the launcher partition, which can be
downloaded on the Pip Protokernel website.

3.2.1 Creating a child partition

The first step to create a child partition is to allocate five memory pages,
using the Pip_AllocPage function, for the data structures descChild,
pdChild, shadow1Child, shadow2Child and configPagesList:
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uint32_t descChild
uint32_t pdChild
uint32_t shadowlChild
uint32_t shadow2Child
uint32_t configPagesList

Pip_AllocPage () ;
Pip_AllocPage () ;
Pip_AllocPage () ;
Pip_AllocPage () ;
Pip_AllocPage () ;

For more information about these data structure, please read the PipIn-
ternals.md file.

We ask Pip to create a child partition using the Pip_CreatePartition
function, providing the previous five memory pages as arguments:

Pip_CreatePartition (descChild , pdChild,
shadow1Child , shadow2Child, configPagesList);

Once the child partition has been created, we need to map, using the
Pip_MapPageWrapper function, each page of the child partition image,
starting with the one at the base address, into the virtual memory of the
newly created partition, starting at the loadAddress address:

for (uint32_t offset = 0; offset < size; offset += PAGESIZE)
{
map-page-rcode = Pip_MapPageWrapper(base + offset ,
descChild , loadAddress + offset);
/* Error handling x*/
}

When all pages have been mapped, we need to allocate a memory page
for the stack of the child partition:

uint32_t stackPage = Pip_AllocPage () ;

It is now necessary to create a context for the child partition. This
context must be at the beginning of the stack. Since the stack grows
downwards from the top of the memory page, the context must be at
the end of the page, at the physical address stackPage + PAGE_SIZE -
sizeof (user_ctx_t):

user_ctx_t *contextPAddr = (user_ctx_t=*) (stackPage +
PAGESIZE — sizeof(user_ctx_t));

and at the virtual address STACK_TOP_VADDR + PAGE_SIZE - sizeof(
user_ctx_t) where STACK_TOP_VADDR is the virtual address where the
stack will be mapped:

user_ctx_t xcontextVAddr = (user_ctx_t*) (STACK.TOP.VADDR +
PAGESIZE — sizeof(user_ctx_t));

The user_ctx_t structure contains the following members:
valid This member indicates whether the structure is valid or not.

eip This member must point to the first instruction of the child.
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pipflags This member member indicates whether the structure wants to be in
virtual sti or in virtual cli.

eflags This member member indicates the state of the context (it is forced to
0x202).

ebp This member must point to the base address of the stack page.
esp This member must point to the top of stack.

We now fill the data structure with the appropriate values:

contextPAddr—>regs .ebp

contextPAddr—>regs . esp
user_ctx_t);

contextPAddr—>valid

STACK.TOP.-VADDR + PAGE_SIZE;
contextPAddr—>regs.ebp — sizeof (

contextPAddr—>valid = 03
contextPAddr—>eip = loadAddress;
contextPAddr—>pipflags = 0;
contextPAddr—>eflags = 0x202;

g

Once the data structure is filled, we need to map the stack of the child
partition to the virtual address STACK_TOP_VADDR:

map-page_-rcode = Pip_MapPageWrapper (stackPage, descChild,
STACK-TOP_VADDR) ;
/* Error handling x*/

We now need to allocate a new memory page for the virtual Interrupt
Descriptor Table (IDT):

user_ctx_t *xvidtPage = Pip_AllocPage();

This table allows the child partition to associate an interrupt with a
handler. Here, we register the virtual address of the context of the child
partition at address 0, 48 and 49:

vidtPage|[ 0] = contextVAddr;
vidtPage [48] = contextVAddr;
vidtPage [49] = contextVAddr;

Finally, we map the virtual IDT memory page to the virtual memory
address VIDT_VADDR:

map-page_-rcode = Pip_-MapPageWrapper ((uint32_t) vidtPage,
descChild , VIDT_-VADDR) ;
/* Error handling x*/

3.2.2 Yielding to a child partition

To transfer the execution flow from a parent partition to a child partition,
we have to use the Pip_Yield service. Thus, the transfer of the execution
flow from the root partition of the launcher to the child partition looks
like:

13



Pip_-Yield (descChild, 0, 49, 0, 0);

This will save the caller context at index 49. Then this triggers interrupt
0 in the virtual IDT of the child partition designated by descChild and
loads the context that was saved at that index, which is the child context.

3.2.3 Handling an interruption

The root partition of the launcher handles two interrupts which are the
timer interrupt and the keyboard interrupt.

To handle an interrupt, we need to create an interrupt handler. An inter-
rupt handler is simply a function that will be called if the corresponding
interrupt has been triggered. The timer interrupt handler of the root
partition looks like:

void timerHandler (void)
{
printf(”A timer interruption was triggered ...\n”);
// Yield to the child partition
doYield () ;
// Should never be reached
PANIC () ;
}

Once we have declared an interrupt handler, we need to allocate a page
for the handler stack using the Pip_AllocPage service:

uint32_t handlerStackAddress = Pip_AllocPage();

and an interruption context using the Pip_AllocContext service:

‘user,ctx,t xtimerHandlerContext = Pip_AllocContext () ;

Now we need to register the level 32 interrupt, which is the timer inter-
rupt, with the timer handler using the Pip RegisterInterrupt service:

Pip_RegisterInterrupt (timerHandlerContext, 32, timerHandler ,
handlerStackAddress, 0);

3.3 The nanny busy beaver partition

The purpose of this partition is to loosely test most of Pip services. To
go into details, see the source code of the nanny busy beaver partition,
which can be downloaded on the Pip Protokernel website.

3.3.1 Deleting a child partition

The nanny busy beaver partition is similar to the launcher partition in
that it creates and transfers its execution flow to a child partition. The
only difference is that the partition shows how a parent partition deletes
a child partition.

14



Before deleting a child partition, the parent partition must remove the
memory pages given to the child partition. To do this, we must call the
Pip_RemoveVAddr service:

Pip-RemoveVAddr(descChild , removableVPage) ;

This service takes as argument the partition descriptor of the partition
and the address of the memory page to remove.

Once the memory pages are removed, we must ask the kernel to collect
the removed memory pages. To do this, we have to use the Pip_Collect
service:

Pip_Collect (descChild , removedVPage) ;

This service takes as argument the partition descriptor of the partition
and the address of the removed memory page.

Finally, when all the memory pages have been recovered by the parent
partition, we can delete the child partition using the Pip_DeletePartition
service:

Pip_DeletePartition (descChild);

This service takes as argument the partition descriptor of the partition
to be deleted.
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